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Abstract. We consider several most frequently used growth functions with the aim of pre-
dicting live weight of domestic animals. Special attention is paid to the possibility of estimating
well the saturation level of animal weight and defining life cycle phases based on animal weight.
Parameters of the growth function are most often estimated on the basis of measurement data
by applying the Least Squares (LS) principle. These nonlinear optimization problems very often
refer to a numerically very demanding and unstable process. In practice, it is also possible
that among the data there might appear several measurement errors or poor measurement sam-
ples. Such data might lead not only to unreliable, but very often to wrong conclusions. The
Least Absolute Deviations (LAD) principle can be successfully applied for the purpose of de-
tecting and minorizing the effect of such data. On the other hand, by using known properties of
LAD-approximation it is possible to significantly simplify the minimizing functional, by which
parameters of the growth function are estimated. Implementation of two such possibilities is
shown in terms of methodology.

1This work was supported by the Ministry of Science, Education and Sports, Republic of Croatia, through
research grants 235-2352818-1034, 079-0790566-0567, 079-0790566-0184
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1 Introduction

The growth of animals is a result of many biological processes where genotype determines their
maximum expression, while environment determines the stage to which this genetic potential can
be utilized. It is also clear that the growth is a significant physiological activity for all domestic
animals, but it is of special interest when meat animals such as pigs, poultry, beef and others
are concerned since the growth is nowadays considered as the material base of animal produc-
tion. In practice, selection criteria usually applied for improving the growth characteristics in
domestic animals are daily live weight gain, food conversion ratio, ultrasound backfat thickness
and different slaughter traits as well as some meat quality traits. For example, pork produc-
ers have economic interest to produce lean pork as efficiently as possible because of consumer
demand and trading based on carcass lean percentage. Knowing the parameters in a certain
model enables prediction of future live weights of animals or their tissues, organs etc. along the
time scale. In this light, modelling of animal growth can be of help in decision making processes
regarding the optimal slaughter age/weight, selection of feeding regime, diet composition, etc.

We consider several most frequently used growth functions simulating animal weight growth.
From that standpoint, special attention is paid to the possibility of estimating well the saturation
level of animal weight and defining life cycle phases based on animal weight.

It is well known that for some growth function parameter estimation on the basis of the
given measurement data is a very demanding numerical procedure, which cannot always be
successfully carried out by ready-made software (Mathematica, Matlab, SAS, Statistica). In this
paper, estimation of the parameter vector a ∈ Rn for some model growth function t 7→ f(t; a) is
estimated on the basis of measurement data (ti, yi), i = 1, . . . ,m, m ≥ n, where 0 < t1 < . . . <

tm, and yi > 0, primarily by applying the Least Absolute Deviations (LAD) principle2 (Bazaraa
et al., 2006; Cadzow, 2002). In that way it is possible that among the data there appear severe
measurement errors or poor measurement samples known in the literature as “outliers" or “wild
points" (Watson, 1980). Such data might lead not only to unreliable, but very often to wrong
conclusions. The LAD-principle can be successfully applied for the purpose of detecting such
data. On the other hand, by using known properties of LAD-approximation it is possible to
simplify the minimizing function significantly, by which parameters of the growth function are

2The principle is attributed to Josip Rudjer Bošković (1711-1787), Croatian scientist (mathematician, physicist,
astronomer and philosopher) born in Dubrovnik. Powerful computers have recently caused great interest in and
popularity of that principle, which can be seen in numerous papers published in journals as well as international
conferences dealing with this issue. A sequence of such conferences is dedicated to J.R. Bošković (Dodge, 1987).
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estimated. If the measurement data are contaminated only by normal distributed random errors,
LAD-approximation may be used as an excellent initial approximation for searching for the best
Least Squares (LS) approximation. Implementation of two such possibilities is shown in terms
of methodology.

For the purpose of estimating the saturation level and determining life cycle phases in animal
weight growth we consider a few most frequently used growth functions:

(a) Logistic function with parameters A, b, c (Jukić and Scitovski, 2003; Kralik et al., 2007;
Pfeifer et al., 1984; Ratkowsky, 1990)

f(t;A, b, c) = A

1 + be−ct
, A, b, c > 0, (1)

which is a solution of the differential equation
dy

dt
= cy(A− y), A, c > 0. (2)

(b) Generalized logistic function with parameters A, b, c, γ (Jukić and Scitovski, 1998; Kralik et
al., 2007; Ratkowsky, 1990; Scitovski et al., 2006)

f(t;A, b, c, γ) = A

(1 + be−cγt)1/γ , A, b, c, γ > 0, (3)

which is a solution of the differential equation
dy

dt
= cy

(
1−

(
y

A

)γ)
, A, c, γ > 0. (4)

(c) Gompertz function with parameters A, b, c (Franses, 1994; Jukić et al., 2004; Kralik et al.,
2007; Ratkowsky, 1990; Vouri et al., 2006)

f(t;A, b, c) = eA−be
−ct
, A, b, c > 0, (5)

which is a solution of the differential equation
dy

dt
= cy(A− ln y), A, c > 0. (6)

(d) Von Bertalanffy growth function with parameters A, b, c (Koehn et al., 2007; Kralik et al.,
2007; Ratkowsky, 1990)

f(t;A, b, c) = A
(
1− be−ct

)3
, A, b, c > 0, (7)

which is a solution of the differential equation
dy

dt
= αy

2
3 − βy, α, β > 0, (8)

whereby the connection between parameters (α, β) and (A, b, c) is given by A = α
β , b = K

α ,
c = β

3 , where K is the integration constant of differential equation (8).
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General growth functions which combine several other growth functions can also be found
in the literature. E.g. a well-known Richardson growth function (Ratkowsky, 1990)

f(t;A, b, c) = A
(
1− be−ct

)δ
, A, b, c > 0,

was developed as a generalization of the von Bertalanffy growth function. Specially, for δ = −1,
this growth fundtion becomes a logistic function, and for δ → ∞, it becomes a Gompertz
function.

The paper is organized as follows. In Section 2 the problem of estimating best LAD-optimal
parameters in nonlinear growth functions is considered. In Subsection 2.1 and Subsection 2.2
two approaches are proposed on the basis of which it is sometimes possible to considerably
simplify the search for best LAD-parameters. Thereby Subsection 2.1 considers the case in
which the growth function contains at least one linear parameter, whereas Subsection 2.2 gives
a modification of a well-known log-linearization method, which for most frequently considered
growth functions gives best LAD-optimal parameters in only a few steps. Section 3 shows the
application of the LAD-principle to estimation of optimal parameters of the mentioned growth
functions, which is then used for determining characteristic points of the mentioned growth
functions and estimation of life cycle phases. In Section 4 LS and LAD-optimal parameters
obtained on the basis of our own measurement data are compared. Finally, in Section 5 main
conclusions are given.

2 Least absolute deviation method

In applied research parameter vector a ∈ Rn of the growth function t 7→ f(t; a) is most frequently
estimated on the basis of measurement data (ti, yi), i = 1, . . . ,m, m ≥ n, by applying the well-
known Least Squares (LS) principle3, that leads to a nonlinear minimization problem

F2(a) =
m∑
i=1

(f(ti; a)− yi)2 → min
a∈Rn

. (9)

Thereby in applied research different linearizations are used without prior justification, which
may lead to unreliable, and very often wrong conclusions.

For example, what happens frequently is that instead of minimizing functional (9) functional

Φ(a) =
m∑
i=1

(ln f(ti; a)− ln yi)2 → min
a∈Rn

(10)

is minimized. Functional Φ can be significantly simpler than functional F2, but parameter vector
â obtained by minimizing functional Φ can significantly differ from the real value obtained by

3It is associated with the German mathematician C. F. Gauss (1777-1855), who applied this principle for the
first time in his paper from 1805 in which he studied motion of celestial bodies.
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minimizing functional F2 (McCallum, 2000; Franses, 1994; Hadeler et al., 2007; Jukić et al.,
2004; Scitovski and Kosanović, 1985).

In this paper we will primarily show the application of the LAD-principle for estimation of
the optimal parameter vector a∗ ∈ Rn of the aforementioned growth functions. Generally, the
problem of searching for the LAD-optimal parameter vector a∗ ∈ Rn of the growth function
t 7→ f(ti; a) is reduced to searching for the stationary point of the functional

F (a) =
m∑
i=1
|f(ti; a)− yi| = ‖r(a)‖1 → min

a∈Rn
, (11)

where r(a) = (r1(a), . . . , rm(a))T , ri(a) = f(ti; a) − yi, i ∈ I = {1, . . . ,m}. According to
Bazaraa et al. (2006); Demjanov and Vasiljev (1981); Gonin and Money (1989); Ruszczynski
(2006), vector a∗ = (a∗1, . . . , a∗n)T ∈ Rn is a stationary point of functional (11), if for every
i ∈ I0(a∗) = {i ∈ I : ri(a∗) = 0} there exists λi ∈ [−1, 1] such that

0 =
∑

i∈I0(a∗)
λi grad ri(a∗) +

∑
i∈I\I0(a∗)

σi(a∗) grad ri(a∗), (12)

where grad ri(a∗) =
(
∂ri(a∗)
∂a1

, . . . , ∂ri(a
∗)

∂an

)T
, and σi(a∗) = sign(ri(a∗)), i ∈ I \ I0(a∗).

In the case when the growth function is linear in parameters, very efficient methods for solving
this problem can be found in the literature (Bartels et al., 1978; Cadzow, 2002; Cupec et al.,
2009; Sabo and Scitovski, 2008; Yan, 2003). If the growth function is nonlinear in parameters,
the problem of minimizing functional (11) is a numerically very demanding nondifferentiable
nonlinear minimization problem. For solving this problem there exist general methods (Kelley,
1999) and corresponding ready-made software (Mathematica, Matlab, SAS, Statistica). It often
happens that by using given software either minimization of functional (11) cannot be done or
it gives wrong solutions for most growth functions given in Section 1.

2.1 Partial linear growth functions

With the majority of growth functions one or more parameters occurs linearly. This fact may
be used for the purpose of simplifying the procedure of searching for LAD-parameters.

Without loss of generality, suppose that growth function t 7→ f(t; a1, . . . , an), is linear in the
parameter a1 and that it can be written e.g. in the following form

f(t; a1, . . . , an) = a1g(t; a2, . . . , an), (a1, a2, . . . , an)T ∈ Rn. (13)

Moreover, let us suppose that (a∗1, a∗2, . . . , a∗n)T ∈ Rn are optimal LAD-parameters of growth
function (13) obtained on the basis of given data points (ti, yi), i ∈ I = {1, . . . ,m}, i.e.

min
(a1,...,an)T∈Rn

F (a1, a2, . . . , an) = F (a∗1, a∗2, . . . , a∗n),
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where
F (a1, a2, . . . , an) =

m∑
i=1
|a1g(ti; a2, . . . , an)− yi| .

In accordance with the well-known property of weighted median (Sabo and Scitovski, 2008),
there exists index i0 ∈ I such that

F (a∗1, a∗2, . . . , a∗n) =
m∑
i=1
|g(ti; a∗2, . . . , a∗n)|

∣∣∣∣a∗1 − yi
g(ti; a∗2, . . . , a∗n)

∣∣∣∣
≥

m∑
i=1
|g(ti; a∗2, . . . , a∗n)|

∣∣∣∣α∗0 − yi
g(ti; a∗2, . . . , a∗n)

∣∣∣∣ ,
where α∗0 := yi0

g(ti0 ;a∗2,...,a∗n) . Note that F (a∗1, a∗2, . . . , a∗n) = F (α∗0, a∗2, . . . , a∗n), i.e. there exists a best
LAD-solution, such that the graph of the corresponding growth function passes through at least
one data point (ti0 , yi0). Based upon that fact, we eliminate parameter a1, by means of which
we obtain a growth function with the remaining n− 1 parameters a2, . . . , an

φ0(t; a2, . . . , an) = yi0
g(t; a2, . . . , an)
g(ti0 ; a2, . . . , an)

, (a2, . . . , an)T ∈ Rn−1,

whereby the corresponding LAD-problem becomes simpler and gives values of parameters â2, . . . , ân.
After that, for the LAD-optimal value of parametar a1 we obtain

â1 = yi0
g(ti0 ; â2, . . . , ân)

,

and the corresponding LAD-sum is F̂ . Among all acceptable possibilities for choosing the data
point (ti0 , yi0), i0 ∈ I, we choose the one that gives the smallest LAD-sum.

On the basis of general results (Bazaraa et al., 2006; Schöbel, 1999, 2003; Watson, 1980;
Yan, 2003), it is also possible to conduct the described procedure of searching for LAD-optimal
parameters in a more general case in which a greater number of parameters occurs linearly in
the growth function. An illustration of this method is given by the example in Section 3.1.

2.2 Log-linearization

For the purpose of solving optimization problem (11) for some special growth functions, a well-
known log-linearization method will be modified and an iterative procedure will be proposed
by which the problem of determining the stationary point of functional (11) is reduced to a
sequence of simpler weighted LAD-problems.

Let us first notice that by applying the Lagrange mean value theorem directly to logarithmic
function u 7→ ln u there directly follows

Lemma 1. For every α, β > 0, α < β there exists ξ(α, β) ∈ 〈α, β〉 such that

ξ(α, β)(ln β − lnα) = β − α.

6



According to Lemma1, there exists ξ(a) = (ξ1(a), . . . , ξm(a))T ∈ Rm, where ξi(a) is a
number between f(ti; a) and yi. Therefore, functional (11) can be written as

F (a) =
m∑
i=1
|ξi(a)| | ln f(ti; a)− ln yi|.

Motivated by the previous formula, let us define the following iterative procedure.

Let a(0) ∈ Rn be an arbitrary vector. For k = 0, 1, . . ., we define

a(k+1) = argmin
a∈Rn

Gk(a), where (14)

Gk(a) =
m∑
i=1
|f(ti; a(k))| | ln f(ti; a)− ln yi|. (15)

The following theorem shows that if sequence a(k), k = 0, 1, . . . , defined by the iterative
procedure (14–15) starting with some term a(µ), µ ≥ 1 becomes stationary, then in that way a
stationary point of functional F is found.

Theorem 1. If there exists an index µ such that in the iterative process (14–15) there holds
aµ+1 = aµ, then the vector a∗ = aµ is a stationary point of functional F given by (11).

Proof. According to the assumption, let a∗ = aµ be a minimum point of the functional Gµ.
Therefore, this is at the same time a stationary point of the functional Gµ, i.e. if for every
i ∈ I ′0(a∗) = {i ∈ I : ln f(ti,a∗)− ln yi = 0} there exists λi ∈ [−1, 1] such that

0 =
∑

i∈I′0(a∗)
λi grad ri(a∗) +

∑
i∈I\I′0(a∗)

σ′i(a∗) grad ri(a∗), (16)

where σ′i(a∗) = sign(ln f(ti; a∗) − ln yi), i ∈ I \ I ′0(a∗). Note that I ′0(a∗) = I0(a) and σ′i(a∗) =
σi(a∗). Hence from (16) there follows

0 =
∑

i∈I0(a∗)
λi grad ri(a∗) +

∑
i∈I\I0(a∗)

σi(a∗) grad ri(a∗),

i.e. a∗ is a stationary point of the functional F .

Hence, if the sequence a(k), k = 0, 1, . . . , defined by the iterative procedure (14–15) starting
with some term a(µ), µ ≥ 1 becomes stationary, then in that way we found a good candidate for
a global minimizer of the functional F . The advantage of the given method lies in the fact that
in every step of the iterative procedure (14-15) we solve a simpler LAD-problem in which at
least one parameter becomes linear. In this case we can apply a property of the LAD-principle
described in Subsection 2.1, by which there exists a best LAD-solution, such that the graph of
the corresponding growth function passes through at least one data point. In addition to that,
as illustrated by the example given in Subsection 3.2, the iterative procedure (14–15) mostly
ends in only a few steps.
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a) Model function b) Derivative of the model function

A

C

I

B

tB tI tC

Figure 1: Growth function and its derivative

3 Applications of the LAD-principle in the prediction of live
weight of domestic animals

All growth functions mentioned in Section 1 are of the sigmoidal form (see Fig1.a) with one
inflection point I = (tI , f(tI)), their derivatives are bell-shaped (see Fig1.b) with two inflection
points B = (tB, f(tB)) and C = (tC , f(tC)).

Upon estimation of parameters of the growth function on the basis of the given measurement
data, it is possible to estimate the saturation level and determine life cycle phases (Kralik et al.,
1999), that are defined by means of the aforementioned points I,B,C:

• Preparation phase – forming t ∈ [0, tB];

• Phase of intensive growth t ∈ [tB, tC ];

• Phase of growth retardation t > tC .

For growth functions mentioned in Introduction, in Table 1 we list formulas for characteristic
points I,B,C.4

3.1 Estimation of LAD-parameters of the generalized logistic function

Since by a generalized logistic function (3) parameter A occurs linearly, we can apply the prin-
ciple described in Section 2.1. Optimal LAD-parameters of the generalized logistic function (3)
are determined such that for every data point (ti0 , yi0), i0 ∈ I, we solve a simpler LAD problem
for the growth function

φ(t; b, c, γ) = yi0
1 + be−cγti0

(1 + be−cγt)1/γ , b, c, γ > 0,

4All evaluations and illustrations were done by Mathematica 6 on a PC (CPU: 2.00 GHz Intel Core 2 Duo
processor, Memory: 1.99 GB DDR2) on the basis of our own software.
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Growth Saturation Inflection tB tC

function level point
Logistic A

( ln b
c ,

A
2
) 1

c ln b
2+
√

3
1
c ln b

2−
√

3

Gen. log. A
(

1
cγ ln b

γ ,
A

(1+γ)1/γ

)
1
cγ ln 2b

γ(γ+3)+γ
√

(γ+1)(γ+5)
1
cγ ln 2b

γ(γ+3)−γ
√

(γ+1)(γ+5)

Gompertz eA
( ln b
c , e

A−1) 1
c ln 2b

3+
√

5
1
c ln 2b

3−
√

5

Von Bertalanffy A
( ln 3b

c , 8A
27
) 1

c ln b(4−
√

7) 1
c ln b(4 +

√
7)

Table 1: Characteristic points of growth functions

and obtain corresponding values of parameters b̂, ĉ, γ̂. After that, for the value of parametar A
we obtain

Â = yi0

(
1 + b̂e−ĉγ̂ti0

)1/γ̂
,

and the corresponding LAD-sum is F̂ . Among all acceptable possibilities for choosing the data
(ti0 , yi0) we choose the one that gives the smallest LAD-sum.

In the following example we illustrate the mentioned method on the basis of our own mea-
surement data.

Example 1. Given are broiler weight measurement data (ti, yi), i = 1, . . . , 8, where ti and yi
are time intervals in weeks and weights of broilers in kg, respectively.

ti 1 2 3 4 5 6 7 8
yi .165 .443 .861 1.401 2.022 2.676 3.312 3.891

Table 2 shows values of parameters b̂, ĉ, γ̂, Â obtained in the previously described way if we
fix some of the first five data points. Point (1, .165) is not acceptable as a fix point because
in this case the parameter γ attains a negative value. Similarly, other points that are not
mentioned are also unacceptable. Since the smallest LAD-sum is attained if we fix the third
point (3, .861), A∗ = 5.78457, b∗ = 1.58802, c∗ = 1.50596, γ∗ = 0.232189 are obtained as
LAD-optimal parameters of the generalized logistic function.

Fix point b̂ ĉ γ̂ Â F̂

(1,.165) 7.11434 0.494918 -17.1631 0.09244 4.20831
(2,.443) 1.58584 1.09853 0.207094 12.7766 1.22962
(3,.861) 1.58802 1.50596 0.232189 5.78457 0.12453
(4,1.401) 2.96276 1.0482 0.361854 5.58901 0.20645
(5,2.022) 3.30886 1.06215 0.374271 5.49061 0.17392

Table 2: Choice of the fix point
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3.2 Estimation of LAD-parameters of the Gompertz function

The problem of searching for the optimal parameters of Gompertz function (5) according to the
LAD-principle leads to minimization of functional (11), which is in this case of the form

F (a, b, c) =
m∑
i=1

∣∣∣ea−be−cti − yi∣∣∣→ min
a,b,c>0

. (17)

General methods of nondifferentiable minimization of this functional rarely give a solution be-
cause of the overflow which often appears in the numerical procedure. In this case the corre-
sponding functional (15) in the iterative procedure (14-15) is

Gk(a, b, c) =
m∑
i=1

eak−bke
−ckti

∣∣∣a− be−cti − ln yi
∣∣∣ , (18)

whereby two parameters occur linearly. The problem of minimizing functional (18) can be
considered as a onedimensional minimization problem:

min
c>0

ψ(k)(c), (19)

whereby the value of the function ψ(k) in some point ĉ is

ψ(k)(ĉ) = min
a,b>0

m∑
i=1

w
(k)
i |a− be

−cti − ln yi|, w
(k)
i = eak−bke

−ckti . (20)

Minimization problem (20) can be solved by applying the Two Points Method (Sabo and Scitovski,
2008) and onedimensional minimization problem (19) can be solved by the Brent method (Brent,
1973) or some of methods mentioned in Kelley (1999). In the following example we illustrate
the mentioned method on the basis of our own measurement data.

Example 2. Given are pig weight measurement data (ti, yi), i = 1, . . . , 26 where ti and yi are
time intervals in days and weights of pigs in kg, respectively.5

ti 49 53 58 61 68 75 82 89 96 103 110 117 124
yi 23.0 23.7 29.0 30.8 33.6 39.0 44.0 48.8 49.0 59.7 67.4 72.0 77.7

ti 131 138 145 152 159 166 173 180 187 194 201 208 215
yi 84.1 87.9 94.7 101.7 110.0 113.4 123.6 120.0 123.6 130.6 139.3 136.1 144.8

Optimal parameters of the Gompertz function will be searched for by the iterative procedure
(14-15) combined by the Two Points Method (Cupec et al., 2009) and the Brent method (Brent,
1973), where the corresponding functionalGk is given by (18). The flow of the iterative procedure
is shown in Table 3. Note that in several steps only the given method attains optimal values
very efficiently.

5The data originate from the "Agrofarmer" farm owned by the Ivančić family. For illustration, it suffices to
use the data referring only to one pig. More detailed data were collected for the purpose of D.Vincek’s PhD
dissertation.
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k ak bk ck F (ak, bk, ck)
0 0 0 0 2 081.5000
1 5.36523 3.74714 0.0105252 42.9155
2 5.34997 3.77618 0.0107468 42.4849
3 5.35321 3.76976 0.0106988 42.4567
4 5.35321 3.76964 0.0106987 42.4567

Table 3: The iterative procedure

4 Comparison of LAD and LS optimal parameters

For broiler growth measurement data from Example 1 and pig growth measurement data from
Example 2 we estimate LAD and LS optimal parameters for all growth functions mentioned in
Section 1. After that we determine characteristic points from Table 1, on the basis of which we
can determine the saturation level and estimate life cycle phases of the animal weight growth in
question.

Let us first consider measurement data from Example 1. In Table 4 optimal LS-parameters are
given in brackets below optimal LAD-parameters for every growth function. We also calculate
corresponding characteristic points I,B,C.

For every optimal LS-parameter of all growth functions in Table 5 asymptotic confidence
intervals are given that are obtained by means of Mathematica module NonlinearRegress.
Figure 2 shows the corresponding area of all curves whose parameters are placed in corresponding
asymptotic confidence intervals.

Growth Parameters Inflection (tB , f(tB)) (tC , f(tC))
function A b c γ point
Logistic 4.92744 26.5123 0.575061 –

(4.61277) (29.9927) (0.626874) – (5.7, 2.5) (3.4, 1.04) (8.0, 3.89)
Gen. log. 5.78457 1.58802 1.50596 0.232189

(6.22662) (0.147201) (9.80803) (0.029831) (5.5, 2.35) (2.5, 0.64) (8.5, 4.14)
Gompertz 1.86191 4.64243 0.27774 –

(1.84738) (4.68099) (0.282193) – (5.5, 2.37) (2.1, 0.47) (9.0, 4.39)
Von Bertalanffy 8.01065 0.898499 0.179395 –

(8.81407) (0.876403) (0.163196) – (5.5, 2.37) (1.1, 0.14) (10.0, 4.9)

Table 4: LS and LAD- optimal parameters and characterictic points of the growth function based
on data from Example 1
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Figure 2: Area of all curves with parameters from confidence intervals based on data referring to
broilers

Growth Confidence interval
function A b c

Logistic 〈4.067, 5.159〉 〈20.593, 39.393〉 〈0.528, 0.725〉
Gen. log. 〈5.206, 6.027〉 〈1.537, 1.759〉 〈1.441, 1.691〉
Gompertz 〈1.813, 1.882〉 〈4.589, 4.772〉 〈0.272, 0.292〉
Von Bertalanffy 〈7.773, 9.895〉 〈0.854, 0.899〉 〈0.145, 0.181〉

Table 5: Confidence intervals for optimal LS-parameters based on data from Example 1

Similar holds for measurement data from Example 2. In Table 6 optimal LS-parameters are
given in brackets below optimal LAD-parameters for every growth function. We also calculate
corresponding characteristic points I,B,C.

For every optimal LS-parameter of all growth functions in Table 7 asymptotic confidence
intervals are given that are obtained by means of Mathematica module NonlinearRegress, and
Figure 3 shows the corresponding area of all curves whose parameters are placed in corresponding
asymptotic confidence intervals.

12



Growth Parameters Inflection (tB , f(tB)) (tC , f(tC))
function A b c γ point
Logistic 160.517 16.2013 0.021953 –

(163.143) (17.1395) (0.022077) – (126.9, 80.3) (66.9, 33.9) (186.9, 126.6)
Gen. log. 206.361 0.266801 0.175882 0.06463

(170.236) (7.59008) (0.0269173) (0.70018) (124.7, 78.3) (37.6, 17.2) (211.9, 143.0)
Gompertz 5.3532 3.76964 0.010699 –

(5.3139) (3.8704) (0.011277) – (124.0, 77.7) (34.1, 15.4) (214.0, 144.2)
Von Bertalanffy 239.972 0.805731 0.007629 –

(241.083) (0.809021) (0.007662) – (115.7, 71.4) (11.9, 4.3) (219.5, 147.8)

Table 6: LS and LAD- optimal parameters and characterictic points of the growth function based
on data from Example 2
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Figure 3: Area of all curves with parameters from confidence intervals based on data referring to
pigs
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Growth Confidence interval
function A b c

Logistic 〈155.137, 171.150〉 〈15.093, 19.186〉 〈0.020, 0.024〉
Gen. log. 〈180.041, 216.692〉 〈0.255, 0.294〉 〈0.164, 0.207〉
Gompertz 〈5.215, 5.413〉 〈3.603, 4.138〉 〈0.010, 0.013〉
Von Bertalanffy 〈203.285, 278.882〉 〈0.763, 0.855〉 〈0.006, 0.009〉

Table 7: Confidence intervals for optimal LS-parameters based on data from Example 2

5 Summary and conclusions

Animal growth is a result of many biological processes in which genotype determines their
maximum expression, whereas environment determines the stage to which this genetic potential
can be utilized. In practice, daily live weight gain, food conversion ratio, ultrasound backfat
thickness and different slaughter traits as well as some meat quality traits make selection criteria
that are usually applied for improving the growth characteristics in domestic animals. Various
nonlinear growth functions described in the paper are used for the purpose of mathematical
modeling of the animal weight growth. Most parameters in these models occur nonlinearly, and
their estimation on the basis of measurement data is often a numerically very demanding and
unstable process. In addition to that, among the data so-called "outliers" are present very often.
Since LS-optimal parameters are heavily dependent on such data, in order to minorize a bad
influence of outliers, the application of the LAD-approach is preferred. If the measurement data
are contaminated only by normal distributed random errors, LAD-approximation may be used as
an excellent initial approximation for searching for the best Least Squares (LS) approximation.

In most growth functions found in the literature, at least one parameter occurs linearly. In
that case, we can apply a property of the LAD-principle by which there exists a best LAD-
solution such that the graph of the corresponding growth function passes through at least one
data point (see Section 2.1). In that way, the number of parameters of the minimizing functional
might be reduced. This method is in Section 3.1 illustrated by an example of the generalized
logistic function.

The paper also considers one modification of the well-known log-linearization method, which
can be successfully applied in many situations. Beside Theorem1, a new, very successful method
was developed, by means of which a stationary point of the minimizing functional can be de-
termined by solving a sequence of simpler LAD-problems. Thereby, in practical applications it
is shown that for the purpose of obtaining a satisfactory approximation of the parameters it
suffices to conduct only a few iterations. This method is in Section 3.2 illustrated by an example
of the Gompertz function.
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Some other mathematical model functions that occur more frequently in other scientific areas
(e.g. economy, marketing, medicine, engineering, etc.) can be considered in a similar way.

The aforementioned two methods for estimation of LAD-optimal parameters in growth func-
tions represent a theoretical contribution of this paper. The application of these methods to
some most frequently used growth functions, as well as estimation of the saturation level of
animal weight and definition of life cycle phases based on animal weight represent a possible
contribution of this paper to the practice.

Acknowledgement. We would like to thank an anonymous referee for useful comments and
remarks, which helped us to improve the paper significantly.
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